This function computes a Principal Component Analysis (PCA) on spectral data, excluding the wavenumber column from the analysis.
Arguments
- .data
A data frame containing spectral data, with one column representing wavenumbers and the remaining columns containing spectral intensity values.
- wn_col
A string specifying the name of the column that contains the wavenumber values. If NULL, the function attempts to retrieve the default wavenumber column set by `set_spec_wn()`.
- scale
A logical value indicating whether the spectral data should be scaled (default is TRUE).
- center
A logical value indicating whether the spectral data should be centered (default is TRUE).
Value
A `prcomp` object containing the PCA results, including principal components, standard deviations, and loadings.
Examples
# \donttest{
set_spec_wn("Wavenumber")
#> Successfully set 'Wavenumber' as the default wavenumber column.
pca_result <- spec_pca(CoHAspec)
summary(pca_result)
#> Importance of components:
#> PC1 PC2 PC3 PC4
#> Standard deviation 38.3080 18.1977 8.32702 3.398e-14
#> Proportion of Variance 0.7856 0.1773 0.03712 0.000e+00
#> Cumulative Proportion 0.7856 0.9629 1.00000 1.000e+00
# }